164 research outputs found

    Regional Time Stepping for SPH

    Get PDF
    International audienceThis paper presents novel and efficient strategies to spatially adapt the amount of computational effort applied based on the local dynamics of a free surface flow, for classic weakly compressible SPH (WCSPH). Using a convenient and readily parallelizable block-based approach, different regions of the fluid are assigned differing time steps and solved at different rates to minimize computational cost. We demonstrate that our approach can achieve about two times speed-up over the standard method even in highly dynamic scenes

    Evaluation of the South Yorkshire Social Infrastructure Programme - Report H: Neighbourhood Infrastructure

    Get PDF

    Evaluation of the South Yorkshire Social Infrastructure Programme - Report D: Investment in Volunteer Centres

    Get PDF

    A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jcp.2016.11.035 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper introduces a two-dimensional cell-centred finite volume discretization of the Poisson problem on adaptive Cartesian quadtree grids which exhibits second order accuracy in both "the solution and its gradients, and requires no grading condition between adjacent cells. At T-junction configurations, which occur wherever resolution differs between neighboring cells, use of the standard centred difference gradient stencil requires that ghost values be constructed by interpolation. To properly recover second order accuracy in the resulting numerical gradients, prior work addressing block-structured grids and graded trees has shown that quadratic, rather than linear, interpolation is required; the gradients otherwise exhibit only first order convergence, which limits potential applications such as fluid flow. However, previous schemes fail or lose accuracy in the presence of the more complex T-junction geometries arising in the case of general non-graded quadtrees, which place no restrictions on the resolution of neighboring cells. We therefore propose novel quadratic interpolant constructions for this case that enable second order convergence by relying on stencils oriented diagonally and applied recursively as needed. The method handles complex tree topologies and large resolution jumps between neighboring cells, even along the domain boundary, and both Dirichlet and Neumann boundary conditions are supported. Numerical experiments confirm the overall second order accuracy of the method in the L-infinity norm. (C) 2016 Elsevier Inc. All rights reserved.This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant RGPIN-04360-2014)

    Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Larionov, E., Batty, C., & Bridson, R. (2017). Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph., 36(4), 101:1–101:11. https://doi.org/10.1145/3072959.3073628We propose a novel unsteady Stokes solver for coupled viscous and pressure forces in grid-based liquid animation which yields greater accuracy and visual realism than previously achieved. Modern fluid simulators treat viscosity and pressure in separate solver stages, which reduces accuracy and yields incorrect free surface behavior. Our proposed implicit variational formulation of the Stokes problem leads to a symmetric positive definite linear system that gives properly coupled forces, provides unconditional stability, and treats difficult boundary conditions naturally through simple volume weights. Surface tension and moving solid boundaries are also easily incorporated. Qualitatively, we show that our method recovers the characteristic rope coiling instability of viscous liquids and preserves fine surface details, while previous grid-based schemes do not. Quantitatively, we demonstrate that our method is convergent through grid refinement studies on analytical problems in two dimensions. We conclude by offering practical guidelines for choosing an appropriate viscous solver, based on the scenario to be animated and the computational costs of different methods.Natural Sciences and Engineering Research Council of Canad

    A practical octree liquid simulator with adaptive surface resolution

    Get PDF
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. © 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0730-0301/2020/7-ART32 $15.00 https://doi.org/10.1145/3386569.3392460We propose a new adaptive liquid simulation framework that achieves highly detailed behavior with reduced implementation complexity. Prior work has shown that spatially adaptive grids are efficient for simulating large-scale liquid scenarios, but in order to enable adaptivity along the liquid surface these methods require either expensive boundary-conforming (re-)meshing or elaborate treatments for second order accurate interface conditions. This complexity greatly increases the difficulty of implementation and maintainability, potentially making it infeasible for practitioners. We therefore present new algorithms for adaptive simulation that are comparatively easy to implement yet efficiently yield high quality results. First, we develop a novel staggered octree Poisson discretization for free surfaces that is second order in pressure and gives smooth surface motions even across octree T-junctions, without a power/Voronoi diagram construction. We augment this discretization with an adaptivity-compatible surface tension force that likewise supports T-junctions. Second, we propose a moving least squares strategy for level set and velocity interpolation that requires minimal knowledge of the local tree structure while blending near-seamlessly with standard trilinear interpolation in uniform regions. Finally, to maximally exploit the flexibility of our new surface-adaptive solver, we propose several novel extensions to sizing function design that enhance its effectiveness and flexibility. We perform a range of rigorous numerical experiments to evaluate the reliability and limitations of our method, as well as demonstrating it on several complex high-resolution liquid animation scenarios.This research was supported by the JSPS Grant-in-Aid for Young Scientists (18K18060) and the Natural Sciences and Engineering Research Council of Canada (Grant RGPIN-04360-2014)
    • …
    corecore